Difference between revisions of "Definitive GPIO guide"
(→Linux Userspace Naming Convention) |
(→Linux Device Tree Naming Convention) |
||
(8 intermediate revisions by one other user not shown) | |||
Line 10: | Line 10: | ||
* The schematics assign a "net name" to the functional wire connected to the pad. This attempts to be a description of what the wire is actually used for and doesn't attempt to reconcile against the pad name in any way. | * The schematics assign a "net name" to the functional wire connected to the pad. This attempts to be a description of what the wire is actually used for and doesn't attempt to reconcile against the pad name in any way. | ||
− | There is a strict 1:1 mapping of balls to canonical names to net names. For example: | + | There is a strict 1:1:1 mapping of balls to canonical names to net names. For example: |
* Ball C20 <-> Pad SD1_DAT1 <-> Net FPGA_EXP_ON (FPGA expansion power on) | * Ball C20 <-> Pad SD1_DAT1 <-> Net FPGA_EXP_ON (FPGA expansion power on) | ||
Line 17: | Line 17: | ||
==User manual/register map naming Convention== | ==User manual/register map naming Convention== | ||
− | + | Unlike hardware names, pad names are re-used, and every pad has up to 8 potential actual functions. | |
+ | |||
+ | The selection of these signal mappings is controlled by a pad/group register, whose name is derived from the canonical pad name. This is a bit confusing, because for example, a pad named SD1_DAT1 has a pad mux register named IOMUXC_SW_*MUX*_CTL_PAD_SD1_DATA1 (asterisk for emphasis only), and it's responsible for configuring SD1_DATA1, ECSPI5_SS0, PWM3_OUT, GPT_CAPTURE2, and GPIO1_IO17 function multiplexing to the SD1_DAT1 pad. | ||
+ | |||
+ | There's also IOMUXC_SW_*PAD*_CTL_PAD_SD1_DATA1 that's responsible for configuring the physical drive characteristic of the pad, which could, again, be mapped to any of the 5 functions. | ||
Again, you can have up to 8 functions per pad, and importantly, it's not always the case that a pad's default function matches its canonical name. | Again, you can have up to 8 functions per pad, and importantly, it's not always the case that a pad's default function matches its canonical name. | ||
Line 36: | Line 40: | ||
Thus, the algorithm to go from a schematic pin to a Linux userspace number is as follows: | Thus, the algorithm to go from a schematic pin to a Linux userspace number is as follows: | ||
− | # Find the function on the schematic | + | # Find the function on the schematic (e.g. PCIE_PWRON) |
# Trace it to the pad on a CPU. Note the canonical name (e.g. GPIO_17) | # Trace it to the pad on a CPU. Note the canonical name (e.g. GPIO_17) | ||
# Look the canonical name up in table 28-4 of the reference manual to resolve the GPIO bit/bank notation (e.g., GPIO_17 = GPIO7_IO12), or search for the pad name in the table on this page (derived from the i.MX6Q Reference Manual Rev 1 4/2013). | # Look the canonical name up in table 28-4 of the reference manual to resolve the GPIO bit/bank notation (e.g., GPIO_17 = GPIO7_IO12), or search for the pad name in the table on this page (derived from the i.MX6Q Reference Manual Rev 1 4/2013). | ||
Line 52: | Line 56: | ||
power-gpio = <&gpio5 17 0> | power-gpio = <&gpio5 17 0> | ||
− | + | The third field is for gpio polarity (0 = active high, 1 = active low). In the context of an interrupt, the third field specifies the polarity of the edge trigger, see Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt | |
Sometimes you have to "hog" a pin in the device tree. To do that, look for the node iomuxc, in the pinctrl_hog:hoggrp. Here, you have to use a series of names and numbers that you look up in the pin control file. | Sometimes you have to "hog" a pin in the device tree. To do that, look for the node iomuxc, in the pinctrl_hog:hoggrp. Here, you have to use a series of names and numbers that you look up in the pin control file. | ||
Line 61: | Line 65: | ||
MX6QDL_PAD_DISP0_DAT23__GPIO5_IO17 0x80000000 | MX6QDL_PAD_DISP0_DAT23__GPIO5_IO17 0x80000000 | ||
+ | |||
+ | According to Documentation/devicetree/bindings/pinctrl/fsl,imx6q-pinctrl.txt that number to the right of the hog spec can be used to set up things like pull-ups, pull-downs, keepers, drive strength, etc. The value 0x80000000 is special and means "I don't know and don't change from the default". Otherwise, it's set according to the following chart (basically the bitfields of the IOMUXC lower 17 bits): | ||
+ | <pre> | ||
+ | PAD_CTL_HYS (1 << 16) | ||
+ | PAD_CTL_PUS_100K_DOWN (0 << 14) | ||
+ | PAD_CTL_PUS_47K_UP (1 << 14) | ||
+ | PAD_CTL_PUS_100K_UP (2 << 14) | ||
+ | PAD_CTL_PUS_22K_UP (3 << 14) | ||
+ | PAD_CTL_PUE (1 << 13) | ||
+ | PAD_CTL_PKE (1 << 12) | ||
+ | PAD_CTL_ODE (1 << 11) | ||
+ | PAD_CTL_SPEED_LOW (1 << 6) | ||
+ | PAD_CTL_SPEED_MED (2 << 6) | ||
+ | PAD_CTL_SPEED_HIGH (3 << 6) | ||
+ | PAD_CTL_DSE_DISABLE (0 << 3) | ||
+ | PAD_CTL_DSE_240ohm (1 << 3) | ||
+ | PAD_CTL_DSE_120ohm (2 << 3) | ||
+ | PAD_CTL_DSE_80ohm (3 << 3) | ||
+ | PAD_CTL_DSE_60ohm (4 << 3) | ||
+ | PAD_CTL_DSE_48ohm (5 << 3) | ||
+ | PAD_CTL_DSE_40ohm (6 << 3) | ||
+ | PAD_CTL_DSE_34ohm (7 << 3) | ||
+ | PAD_CTL_SRE_FAST (1 << 0) | ||
+ | PAD_CTL_SRE_SLOW (0 << 0) | ||
+ | </pre> | ||
+ | |||
+ | Pro tip: don't use a value of 0, it doesn't work. | ||
+ | |||
+ | ==Using Sysfsgpio on Linux== | ||
+ | |||
+ | As an example, we'll use the controllable 5V power source. | ||
+ | |||
+ | The Device Tree lists it as gpio3,19: | ||
+ | |||
+ | gpios = <&gpio3 19 GPIO_ACTIVE_HIGH> | ||
+ | |||
+ | To get the Linux GPIO number, use the formula above: (bank - 1 * 32) + pin: | ||
+ | |||
+ | (3-1 * 32) + 19 = 83 | ||
+ | |||
+ | Therefore, the 5v (fan)source is GPIO 83. | ||
+ | |||
+ | Expose the GPIO to userspace: | ||
+ | |||
+ | echo 83 > /sys/class/gpio/export | ||
+ | |||
+ | Make it an output: | ||
+ | |||
+ | echo out > /sys/class/gpio/gpio83/direction | ||
+ | |||
+ | And set it high: | ||
+ | |||
+ | echo 1 > /sys/class/gpio/gpio83/value | ||
=i.MX6Q GPIO bit/bank to Pad name Table= | =i.MX6Q GPIO bit/bank to Pad name Table= |
Latest revision as of 10:53, 18 March 2017
Contents
Mapping names to Numbers
GPIOs on the i.MX6 linux system are confusing, at best.
There are several naming conventions at play.
Hardware Naming Convention
- Every ball on the physical i.MX6 chip has a "pad name" by Freescale.
- Each ball has a unique alphanumeric identifier which maps it to a location in the BGA.
- Each pad has a "canonical name". This is the name that is shown on the schematic symbol inside the part, next to the pin and pin number. It has no essential connection to the function's actual signal mapping.
- The schematics assign a "net name" to the functional wire connected to the pad. This attempts to be a description of what the wire is actually used for and doesn't attempt to reconcile against the pad name in any way.
There is a strict 1:1:1 mapping of balls to canonical names to net names. For example:
- Ball C20 <-> Pad SD1_DAT1 <-> Net FPGA_EXP_ON (FPGA expansion power on)
- Ball R6 <-> Pad GPIO_4 <-> Net SD2_CD (SD slot 2 card detect)
- Ball R20 <-> Pad DISP0_DAT13 <-> Net FPGA_RESET_N (FPGA reset, active low)
User manual/register map naming Convention
Unlike hardware names, pad names are re-used, and every pad has up to 8 potential actual functions.
The selection of these signal mappings is controlled by a pad/group register, whose name is derived from the canonical pad name. This is a bit confusing, because for example, a pad named SD1_DAT1 has a pad mux register named IOMUXC_SW_*MUX*_CTL_PAD_SD1_DATA1 (asterisk for emphasis only), and it's responsible for configuring SD1_DATA1, ECSPI5_SS0, PWM3_OUT, GPT_CAPTURE2, and GPIO1_IO17 function multiplexing to the SD1_DAT1 pad.
There's also IOMUXC_SW_*PAD*_CTL_PAD_SD1_DATA1 that's responsible for configuring the physical drive characteristic of the pad, which could, again, be mapped to any of the 5 functions.
Again, you can have up to 8 functions per pad, and importantly, it's not always the case that a pad's default function matches its canonical name.
Almost every pad has a GPIO function, and GPIO functions are internally tracked by a "bank/bit" convention. There are 7 banks of GPIOs with up to 32 bits each, and as is quite typical of hardware naming conventions, the index is 1-based, not 0 based; but the register addresses are all 0-based, requiring you to subtract 1 from the name.
Linux Userspace Naming Convention
- Almost every pad has, as one of its 8 possible functions, a GPIO role.
- Linux uses a single integer to enumerate all pads, therefore Freescale's bank/bit notation for GPIOs must be mapped.
- The bank/bit to Linux userspace formula is:
linux gpio number = (gpio_bank - 1) * 32 + gpio_bit
So, GPIO1_IO17 maps to (1 - 1) * 32 + 17 = 17.
A more complex example is DISP0_DAT13. It maps to GPIO5_IO07, so its userspace number is (5 - 1) * 32 + 7 = 135.
Thus, the algorithm to go from a schematic pin to a Linux userspace number is as follows:
- Find the function on the schematic (e.g. PCIE_PWRON)
- Trace it to the pad on a CPU. Note the canonical name (e.g. GPIO_17)
- Look the canonical name up in table 28-4 of the reference manual to resolve the GPIO bit/bank notation (e.g., GPIO_17 = GPIO7_IO12), or search for the pad name in the table on this page (derived from the i.MX6Q Reference Manual Rev 1 4/2013).
- Apply the translation formula: (7 - 1) * 32 + 12 = linux userspace gpio204
Note in the above example, the "pad name" GPIO_17 had *nothing* to do with the actual GPIO bit/bank notation. So don't let the names fool you. Think of pad names as unique strings with no inherent meaning, and your life will be easier.
Linux Device Tree Naming Convention
There's another place where you might want to call out a GPIO: the device tree.
Novena's device tree entry would be found in arch/arm/boot/dts/imx6q-novena.dts.
When referring to a GPIO in a device tree node, you use the bit/bank mapping scheme. For example, AUD_PWRON (schematic net name) maps to DISP0_DAT23 (i.MX6Q pad name). This maps to GPIO5_IO17 (per lookup in table below), and therefore the device tree entry for this is
power-gpio = <&gpio5 17 0>
The third field is for gpio polarity (0 = active high, 1 = active low). In the context of an interrupt, the third field specifies the polarity of the edge trigger, see Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt
Sometimes you have to "hog" a pin in the device tree. To do that, look for the node iomuxc, in the pinctrl_hog:hoggrp. Here, you have to use a series of names and numbers that you look up in the pin control file.
Easiest way I've found is to start by searching the bank/bit name in the file, whose name is "imx6q-pinfuc.h". Note the format for the name is "GPIOn_IOmm" (I always forget the IO before the bit name).
Searching the canonical pad name is confusing because the pad name is re-used up to 8 times, and it doesn't sufficiently disambiguate the function.
MX6QDL_PAD_DISP0_DAT23__GPIO5_IO17 0x80000000
According to Documentation/devicetree/bindings/pinctrl/fsl,imx6q-pinctrl.txt that number to the right of the hog spec can be used to set up things like pull-ups, pull-downs, keepers, drive strength, etc. The value 0x80000000 is special and means "I don't know and don't change from the default". Otherwise, it's set according to the following chart (basically the bitfields of the IOMUXC lower 17 bits):
PAD_CTL_HYS (1 << 16) PAD_CTL_PUS_100K_DOWN (0 << 14) PAD_CTL_PUS_47K_UP (1 << 14) PAD_CTL_PUS_100K_UP (2 << 14) PAD_CTL_PUS_22K_UP (3 << 14) PAD_CTL_PUE (1 << 13) PAD_CTL_PKE (1 << 12) PAD_CTL_ODE (1 << 11) PAD_CTL_SPEED_LOW (1 << 6) PAD_CTL_SPEED_MED (2 << 6) PAD_CTL_SPEED_HIGH (3 << 6) PAD_CTL_DSE_DISABLE (0 << 3) PAD_CTL_DSE_240ohm (1 << 3) PAD_CTL_DSE_120ohm (2 << 3) PAD_CTL_DSE_80ohm (3 << 3) PAD_CTL_DSE_60ohm (4 << 3) PAD_CTL_DSE_48ohm (5 << 3) PAD_CTL_DSE_40ohm (6 << 3) PAD_CTL_DSE_34ohm (7 << 3) PAD_CTL_SRE_FAST (1 << 0) PAD_CTL_SRE_SLOW (0 << 0)
Pro tip: don't use a value of 0, it doesn't work.
Using Sysfsgpio on Linux
As an example, we'll use the controllable 5V power source.
The Device Tree lists it as gpio3,19:
gpios = <&gpio3 19 GPIO_ACTIVE_HIGH>
To get the Linux GPIO number, use the formula above: (bank - 1 * 32) + pin:
(3-1 * 32) + 19 = 83
Therefore, the 5v (fan)source is GPIO 83.
Expose the GPIO to userspace:
echo 83 > /sys/class/gpio/export
Make it an output:
echo out > /sys/class/gpio/gpio83/direction
And set it high:
echo 1 > /sys/class/gpio/gpio83/value
i.MX6Q GPIO bit/bank to Pad name Table
This table should *only* be used for the i.MX6Q. If you're mapping a Dual-Lite variant, please refer to the user manual (which you can download from the Freescale website).
GPIO1_IO00 - GPIO_0 GPIO1_IO01 - GPIO_1 GPIO1_IO02 - GPIO_2 GPIO1_IO03 - GPIO_3 GPIO1_IO04 - GPIO_4 GPIO1_IO05 - GPIO_5 GPIO1_IO06 - GPIO_6 GPIO1_IO07 - GPIO_7 GPIO1_IO08 - GPIO_8 GPIO1_IO09 - GPIO_9 GPIO1_IO10 - SD2_CLK GPIO1_IO11 - SD2_CMD GPIO1_IO12 - SD2_DAT3 GPIO1_IO13 - SD2_DAT2 GPIO1_IO14 - SD2_DAT1 GPIO1_IO15 - SD2_DAT0 GPIO1_IO16 - SD1_DAT0 GPIO1_IO17 - SD1_DAT1 GPIO1_IO18 - SD1_CMD GPIO1_IO19 - SD1_DAT2 GPIO1_IO20 - SD1_CLK GPIO1_IO21 - SD1_DAT3 GPIO1_IO22 - ENET_MDIO GPIO1_IO23 - ENET_REF_CLK GPIO1_IO24 - ENET_RX_ER GPIO1_IO25 - ENET_CRS_DV GPIO1_IO26 - ENET_RXD1 GPIO1_IO27 - ENET_RXD0 GPIO1_IO28 - ENET_TX_EN GPIO1_IO29 - ENET_TXD1 GPIO1_IO30 - ENET_TXD0 GPIO1_IO31 - ENET_MDC GPIO2_IO00 - NANDF_D0 GPIO2_IO01 - NANDF_D1 GPIO2_IO02 - NANDF_D2 GPIO2_IO03 - NANDF_D3 GPIO2_IO04 - NANDF_D4 GPIO2_IO05 - NANDF_D5 GPIO2_IO06 - NANDF_D6 GPIO2_IO07 - NANDF_D7 GPIO2_IO08 - SD4_DAT0 GPIO2_IO09 - SD4_DAT1 GPIO2_IO10 - SD4_DAT2 GPIO2_IO11 - SD4_DAT3 GPIO2_IO12 - SD4_DAT4 GPIO2_IO13 - SD4_DAT5 GPIO2_IO14 - SD4_DAT6 GPIO2_IO15 - SD4_DAT7 GPIO2_IO16 - EIM_A22 GPIO2_IO17 - EIM_A21 GPIO2_IO18 - EIM_A20 GPIO2_IO19 - EIM_A19 GPIO2_IO20 - EIM_A18 GPIO2_IO21 - EIM_A17 GPIO2_IO22 - EIM_A16 GPIO2_IO23 - EIM_CS0 GPIO2_IO24 - EIM_CS1 GPIO2_IO25 - EIM_OE GPIO2_IO26 - EIM_RW GPIO2_IO27 - EIM_LBA GPIO2_IO28 - EIM_EB0 GPIO2_IO29 - EIM_EB1 GPIO2_IO30 - EIM_EB2 GPIO2_IO31 - EIM_EB3 GPIO3_IO00 - EIM_DA0 GPIO3_IO01 - EIM_DA1 GPIO3_IO02 - EIM_DA2 GPIO3_IO03 - EIM_DA3 GPIO3_IO04 - EIM_DA4 GPIO3_IO05 - EIM_DA5 GPIO3_IO06 - EIM_DA6 GPIO3_IO07 - EIM_DA7 GPIO3_IO08 - EIM_DA8 GPIO3_IO09 - EIM_DA9 GPIO3_IO10 - EIM_DA10 GPIO3_IO11 - EIM_DA11 GPIO3_IO12 - EIM_DA12 GPIO3_IO13 - EIM_DA13 GPIO3_IO14 - EIM_DA14 GPIO3_IO15 - EIM_DA15 GPIO3_IO16 - EIM_D16 GPIO3_IO17 - EIM_D17 GPIO3_IO18 - EIM_D18 GPIO3_IO19 - EIM_D19 GPIO3_IO20 - EIM_D20 GPIO3_IO21 - EIM_D21 GPIO3_IO22 - EIM_D22 GPIO3_IO23 - EIM_D23 GPIO3_IO24 - EIM_D24 GPIO3_IO25 - EIM_D25 GPIO3_IO26 - EIM_D26 GPIO3_IO27 - EIM_D27 GPIO3_IO28 - EIM_D28 GPIO3_IO29 - EIM_D29 GPIO3_IO30 - EIM_D30 GPIO3_IO31 - EIM_D31 GPIO4_IO05 - GPIO_19 GPIO4_IO06 - KEY_COL0 GPIO4_IO07 - KEY_ROW0 GPIO4_IO08 - KEY_COL1 GPIO4_IO09 - KEY_ROW1 GPIO4_IO10 - KEY_COL2 GPIO4_IO11 - KEY_ROW2 GPIO4_IO12 - KEY_COL3 GPIO4_IO13 - KEY_ROW3 GPIO4_IO14 - KEY_COL4 GPIO4_IO15 - KEY_ROW4 GPIO4_IO16 - DI0_DISP_CLK GPIO4_IO17 - DI0_PIN15 GPIO4_IO18 - DI0_PIN2 GPIO4_IO19 - DI0_PIN3 GPIO4_IO20 - DI0_PIN4 GPIO4_IO21 - DISP0_DAT0 GPIO4_IO22 - DISP0_DAT1 GPIO4_IO23 - DISP0_DAT2 GPIO4_IO24 - DISP0_DAT3 GPIO4_IO25 - DISP0_DAT4 GPIO4_IO26 - DISP0_DAT5 GPIO4_IO27 - DISP0_DAT6 GPIO4_IO28 - DISP0_DAT7 GPIO4_IO29 - DISP0_DAT8 GPIO4_IO30 - DISP0_DAT9 GPIO4_IO31 - DISP0_DAT10 GPIO5_IO00 - EIM_WAIT GPIO5_IO02 - EIM_A25 GPIO5_IO04 - EIM_A24 GPIO5_IO05 - DISP0_DAT11 GPIO5_IO06 - DISP0_DAT12 GPIO5_IO07 - DISP0_DAT13 GPIO5_IO08 - DISP0_DAT14 GPIO5_IO09 - DISP0_DAT15 GPIO5_IO10 - DISP0_DAT16 GPIO5_IO11 - DISP0_DAT17 GPIO5_IO12 - DISP0_DAT18 GPIO5_IO13 - DISP0_DAT19 GPIO5_IO14 - DISP0_DAT20 GPIO5_IO15 - DISP0_DAT21 GPIO5_IO16 - DISP0_DAT22 GPIO5_IO17 - DISP0_DAT23 GPIO5_IO18 - CSI0_PIXCLK GPIO5_IO19 - CSI0_MCLK GPIO5_IO20 - CSI0_DATA_EN GPIO5_IO21 - CSI0_VSYNC GPIO5_IO22 - CSI0_DAT4 GPIO5_IO23 - CSI0_DAT5 GPIO5_IO24 - CSI0_DAT6 GPIO5_IO25 - CSI0_DAT7 GPIO5_IO26 - CSI0_DAT8 GPIO5_IO27 - CSI0_DAT9 GPIO5_IO28 - CSI0_DAT10 GPIO5_IO29 - CSI0_DAT11 GPIO5_IO30 - CSI0_DAT12 GPIO5_IO31 - CSI0_DAT13 GPIO6_IO00 - CSI0_DAT14 GPIO6_IO01 - CSI0_DAT15 GPIO6_IO02 - CSI0_DAT16 GPIO6_IO03 - CSI0_DAT17 GPIO6_IO04 - CSI0_DAT18 GPIO6_IO05 - CSI0_DAT19 GPIO6_IO06 - EIM_A23 GPIO6_IO07 - NANDF_CLE GPIO6_IO08 - NANDF_ALE GPIO6_IO09 - NANDF_WP_B GPIO6_IO10 - NANDF_RB0 GPIO6_IO11 - NANDF_CS0 GPIO6_IO14 - NANDF_CS1 GPIO6_IO15 - NANDF_CS2 GPIO6_IO16 - NANDF_CS3 GPIO6_IO17 - SD3_DAT7 GPIO6_IO18 - SD3_DAT6 GPIO6_IO19 - RGMII_TXC GPIO6_IO20 - RGMII_TD0 GPIO6_IO21 - RGMII_TD1 GPIO6_IO22 - RGMII_TD2 GPIO6_IO23 - RGMII_TD3 GPIO6_IO24 - RGMII_RX_CTL GPIO6_IO25 - RGMII_RD0 GPIO6_IO26 - RGMII_TX_CTL GPIO6_IO27 - RGMII_RD1 GPIO6_IO28 - RGMII_RD2 GPIO6_IO29 - RGMII_RD3 GPIO6_IO30 - RGMII_RXC GPIO6_IO31 - EIM_BCLK GPIO7_IO00 - SD3_DAT5 GPIO7_IO01 - SD3_DAT4 GPIO7_IO02 - SD3_CMD GPIO7_IO03 - SD3_CLK GPIO7_IO04 - SD3_DAT0 GPIO7_IO05 - SD3_DAT1 GPIO7_IO06 - SD3_DAT2 GPIO7_IO07 - SD3_DAT3 GPIO7_IO08 - SD3_RST GPIO7_IO09 - SD4_CMD GPIO7_IO10 - SD4_CLK GPIO7_IO11 - GPIO_16 GPIO7_IO12 - GPIO_17 GPIO7_IO13 - GPIO_18